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ABSTRACT  

Lane-changing is a critical driving behavior of connected and automated vehicles (CAVs). This 

research provided a state-of-the-art review of the data-driven lane-changing decision (LCD) 

modeling for CAVs. The first step was to perform a knowledge graph co-occurrence analysis 

on keywords associated with data-driven LCD models. Accordingly, the existing research was 

summarized from two perspectives. One is based on the used data sources. The extensively 

utilized data sources, their properties, the primarily used settings, and the applicable scenarios 

were all summarized in this study. The other perspective is based on LCD modeling methods. 

The prevalent modeling methods and the accompanying methodologies for validation and 

evaluation were covered. Based on these findings, three future research directions were 
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concluded for data-driven LCD models of CAVs, i.e., the demand for a more comprehensive 

dataset that includes the characteristics of drivers and the mixed flow environment, the novel 

data-driven methods, the unified test set, and test standards. The results of this study are 

expected to contribute to the development of more precise and effective LCD models for CAVs. 

 

INTRODUCTION 
Vehicle motion planning and decision-making are crucial elements of CAVs technology. Lane-

changing (LC) behavior is one of the most common driving habits when cars are moving.  LC 

refers to the driving behavior of leaving the current lane and merging into an adjacent lane to 

achieve a desired driving objective. After considering a number of traffic variables, such as the 

speeds and separation of nearby vehicles, the state of the roads, and traffic management, this 

behavior is carried out. The LC behavior must execute the lateral motion required for lane 

switching while also considering the influence on the following car and the car-following 

relationship between the leading car on the original lane and the target lane. As a result, the LC 

behavior process is more complex than that of car-following behavior, and the related research 

findings are relatively limited (1). 

 

The modeling of LCD is an abstraction of the decision-making process in the context of lane-

changing behavior, outlining the logical principles and decision-making process that driving 

systems (or drivers) employ to choose whether to change lanes. This modeling focuses on 

expressing the micro-level LCD process and calibrating physical parameters. With the arrival 

of the big data era, researchers can benefit from the rapidly advancing data collection 

technology, which allows them to use high-precision, large-sample vehicle motion data and 

employ theoretical methods such as machine learning and data science. The underlying 

principles governing vehicle lane-changing decision-making can be discovered by researchers 

through training, learning, and iterating on the sample data. Such data-driven approaches for 

LCD also offer practical and human-like CAV decision-making. 

 

An investigation of the lane-changing behavior of human vehicles (HV) must serve as the 

foundation for any human-like LCD for CAVs. There has been much research in recent years 

that has created data-driven models for LCD. This paper examines data sources, data features, 

modeling methods, and verification in-depth with a focus on data-driven LCD models. The 

article includes an overview of the current state of the research and an outlook on potential 

development tendencies. 

 

ANALYSIS OF EXISTING RELEVANT RESEARCH BASED 

ON KNOWLEDGE GRAPHS 

This study gathered 385 Chinese and 248 English papers that were relevant to data-driven LCD 

models from the CNKI and Web of Science databases between 1998 and 2022 in order to 

acquire a thorough grasp of the primary research content and future research directions of data-

driven LCD models. 
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 Lane-changing models (131 times), car-following models (37 times), lane-changing decision 

(23 times), driving behavior (16 times), and vehicle-road collaboration(14 times) are the most 

frequently used keywords in the selected CNKI Chinese literature. The lane-changing decision 

unit's co-occurrence knowledge graph is shown in Figure 1. Figure 1 shows that there were 49 

articles with the term "lane-changing decision" in them. Ten articles' keywords mention either 

cellular automata or intelligent transportation, while eight articles' keywords include lane-

changing trajectory. Microsimulation, safe distance, and car-following models, which correlate 

to rule-based lane-changing models and the use of microsimulation to acquire data or validate 

models, first appeared among the keywords connected to the lane-changing decision earlier 

(about 2014). In recent years (after 2020), terms like autonomous driving, data-driven, and deep 

learning have become very closely associated with lane-changing decisions. 

Figure 1: Co-occurrence knowledge graph of the lane-changing decision unit in 

Chinese literature 

The most often occurring keywords in the literature from the chosen Web of Science Core 

Collection are "lane changing model," "data-driven," "autonomous vehicles," and "trajectory 

data," with 43, 26, 21, and 17 occurrences, respectively. As seen in Figure 2, "autonomous 

vehicles," "safety," "collision avoidance," and "reinforcement learning" all appeared 

simultaneously in the 26 articles that used the keyword "decision making," with 12, 8, 7, and 6 

occurrences each. "Neural network," "car following," and "prediction" were the earlier 

appearing keywords in terms of publishing time. Deep reinforcement learning, automation, and 

naturalistic trajectory are some current terms that are strongly related to decision making. 
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In conclusion, the analysis of lane-changing behavior characteristics utilizing microscopic 

traffic data, such as vehicle trajectories in intelligent transportation systems, can be considered 

as the core emphasis of LCD research in recent years. To help CAVs achieve safer, more 

pleasant, and more effective autonomous driving, a precise lane-changing model can be built 

using the strong feature extraction capabilities of deep learning on a vast amount of historical 

data. As a result, the three following issues will be resolved: data sources and their 

characteristics, commonly used modeling methods and validation, and future research 

directions. 

Figure 2: Co-occurrence knowledge graph of the lane-changing decision unit in English 

literature 

 

THE DATA SOURCES FOR DATA-DRIVEN LANE-

CHANGING MODELS 

Table 1 provides an overview of the data sources used in the literature reviewed for this paper, 

their scenarios, the size of the samples that were collected, key fields, and other details. 

 

Table 1 shows that the release of the high-precision vehicle trajectory data 

(https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-

Trajector/) by NGSIM (Next Generation Simulation) in 2007 can be interpreted as a turning 

https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/
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point in the study of data-driven LCD models. Prior to its introduction, researchers frequently 

used conventional techniques to collect data, including manual video calibration using cameras 

positioned at a height [33], on-road measurements with data collection vehicles [32], and 

interactive driving simulators [33]. Nevertheless, the data collected using these techniques fell 

short of the requirements of data-driven LCD models in terms of both quantity and accuracy. 

Since the release of NGSIM trajectory data, it has been the preferred choice for various research 

on data-driven lane-changing decision models. Nine articles, or 80% of the total, are represented 

in Table 1 as having used NGSIM as the data source for LCD models. Several modeling 

techniques have been investigated using the NGSIM data, including BP neural networks [4], 

support vector machines [6], and various deep learning-based LCD models [10]. 

 

It should be mentioned that NGSIM data is collected using cameras set up in a high location on 

the side of the road. Some researchers have found that these errors cannot be corrected through 

strict data cleaning or interpolation, especially at the junction of two camera frames where there 

is frequently a significant error in position and speed information due to the limitations of 

camera quality and image processing technology at that time. This erroneous data can create 

difficulties for data-based research on traffic flow theory. [34] 

 

In recent years, with the advancements in drone technology and high-precision video 

acquisition, some open-source high-precision vehicle trajectory datasets have emerged. These 

include the German HighD dataset released in 2018, followed by the inD, rounD, and exiD 

datasets in subsequent years, the INTERACTION dataset released in 2019 containing multiple 

countries, and the Ubiquitous Traffic Eyes dataset, which was released by Southeast University 

in China. 

 

The HighD dataset (https://www.highd-dataset.com) was collected by drones on six different 

highways near Cologne, Germany, and includes approximately 110,000 trajectories of cars and 

trucks. Compared to the NGSIM dataset, HighD has a larger sample size, more comprehensive 

microscopic traffic flow data, and higher data accuracy. Specifically, in terms of the number of 

recorded vehicles, the HighD dataset is nearly 12 times that of the NGSIM dataset. In terms of 

the recorded driving distance, the HighD dataset is nearly 9 times that of the NGSIM dataset. 

In addition, the proportion of trucks in the HighD dataset is 23%, significantly higher than the 

3% in the NGSIM dataset, and there are relatively few trajectories in congested states [12]. The 

inD, rounD, and exiD datasets were built using the same approach for three different scenarios: 

https://www.highd-dataset.com/
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urban unsignalized intersections, roundabouts, and highway entrances and exits. 

 

The INTERACTION dataset (http://interaction-dataset.com) is a comprehensive trajectory 

dataset published in 2019 that contains numerous collected scenarios from China, the United 

States, Germany, and Bulgaria, covering freeways, merging sections, roundabouts, and 

intersections. The large, varied dataset includes high-resolution maps with entire semantics, 

which can significantly reduce the amount of data preparation required. 

 

The Ubiquitous Traffic Eyes dataset (http://seutraffic.com/#/home) is a drone video trajectory 

dataset released by Southeast University in China in 2020. It currently includes six maps, 

including expressways and the entrances and exits. The dataset uses complete video vehicle 

trajectory automatic extraction technology, which leads to a 0.1-second temporal resolution and 

a 0.01-meter position resolution. 

 

In summary, for the past ten years, the NGSIM dataset has been the biggest measured 

microscopic traffic dataset made available to the research community. Its data forms the basis 

of the majority of data-driven studies on microscopic traffic flow, and numerous NGSIM-based 

model studies are frequently carried out using extensive research methods. Yet, in terms of data 

volume, accuracy, and the variety of traffic scenarios, recently published datasets have a better 

performance. Also, their appearance helps to solve the problems of the NGSIM dataset and also 

presents new opportunities and challenges for the validation and generalization testing of 

existing data-driven LCD models. 

http://seutraffic.com/#/home
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Table 1: Commonly used datasets for data-driven lane-changing models   

Data Source Publishing Time Literature Data Collection Country Scenario Number of Maps
Length of Collected

Road Section(m)
Collection Hours

Driving

Distance(km)

Number of

Lanes per

Direction

Frames(Hz)
Trajectorie

s
Road User Type Key Fields Features

NGSIM(2) 2007

Hou et al., Zheng et al., Qiu

et al., DOU et al., Xie et al.,

Huang et al., Guo et al.,

Peng et al., Jia et al.(3-11)

Road side cameras the U.S. Highway, merging section 3 500-640 1.5 5071 5~6 10 9206 car, truck
instantaneous speed and

acceleration

The best known, most widely used and earliest

published public trajectory dataset

HighD(12) 2018
Zhang et al., Chen et al.,

Dong, GU et al.(13-16)
Drone Germany Highway, merging section 6 400-420 16.5 45,000 2~3 25 110,500 car, truck

The minimal distance

headway(DHW)

The minimal time

headway(THW)

The minimal time to

collision(TTC)

·Official pre-processed data including:

surrounding vehicles, THW and TTC, vehicle

size and classification of driving behavior

including lane changes.

·Highway without speed limit

·5600 complete lane-changing tragectories

inD(17) 2020
Lu et al. , Krasowski et

al.(18,19)
Drone Germany Unsignaled intersection 4 80*40~140*70 10 — 2~3 25 13,599

car, truck,

pedestrain,

bicycle

The type of road users, and

their horizontal and

longitudinal speed and

acceleration

·Four different recording locations

·Different intersection types

·Typical positioning error <10 cm

·HD maps in lanelet2 are provided

·Visualization of recorded trajectories

rounD(20) 2020
S. Thal et al. , D. Deveaux

et al.(21,22)
Drone Germany Roundabout 3 140*70 6 — 1~2 25 13,746

car, truck, van,

pedestrain,

bicycle,

motorcycle

Accurate visualized

trajectories, the type of road

users, the direction of every

trajectory concerning

adjacent time steps, speed

and acceleration

 ·Officially released data pre-processing and

visualization tools:

https://www.github.com/ika-rwth-

aachen/drone-dataset-tools

 ·The only dataset providing the exact location

of the recording sites and gives geo-

referenced coordinates

exiD(23) 2021
Li X et al. , P. Tkachenko et

al.(24,25)
Drone Germany Highway entrance and exit 7 420 16.1 27,274 2~4 25 69,172 car, truck, van

Velocity and acceleration in

the x-y and the radial-

latitudinal direction,

the width of current lane,

whether to change lanes,

the DWH, THW, TTC and

relative speed on current lane

·High traffic volume

·Rich merging scenarios

·Different speed limit scenarios (no speed

limit, 120km/h and 100km/h)

INTERACTION(26) 2019
Kiran, B et al. , Xiaoyu et

al.(27,28)

Drone and road side

cameras

China

the U.S.

Germany

Bulgaria

Merging, lane-changing

Unsignaled intersection

Signaled intersection

Roundabout

12 —

2

7

1

6

— — 10

10933

14867

3775

10479

car, pedestrain,

bicycle

the coordinates, size,

horizontal and longitudinal

speed, yaw rate

·Complexity of the behavior(negotiations,

inexplicit right-of-way, irrational behavior and

aggressive maneuvers)

·Diversity of the scenarios(unsignalized and

signalized intersections, roundabounts with

stop/yield signs, as well as zipper merging and

lane changes in urban and highway scenarios.)

·HD-map with full semantics(lane

connections, turn directions traffic rules, etc.)

Ubiquitous Traffic Eyes(29) 2020
Rongxia et al. , Wen et

al.(30,31)
Drone China Highway, merging section 6 140~430 0.8 — 5 30 7808 car, truck the DWH, THW and TTC

·Time accuracy 0.1s, position accuracy 0.01m

·Achieved 100% vehicle detection after

manual correction
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DATA-DRIVEN METHODS AND EVALUATION 

According to Xie et al. (7), there are two types of data-driven LCD models: traditional machine 

learning-based LCD models and deep learning-based LCD models. Deep learning-based 

models include those based on deep belief networks (DBN), convolutional neural networks 

(CNN), long short-term memory neural networks (LSTM), and deep reinforcement learning 

(DRL). Traditional machine learning-based models include those based on neural networks, 

support vector machines, and Bayesian filters. Table 2 summarizes the commonly used 

modeling methods, inputs and outputs, and evaluation criteria for data-driven LCD models. 

Table 2: Commonly used methods for data-driven lane-changing models 

  

Types Machine Learning Methods Literature Year Inputs Outputs Evaluation

Neural Networks Hunt et al.(32) 1994

x(t)

v(t)

ΔS(t)

Target lanes and coordinates Correct classification rate of 70%

BP Neural Networks Zheng et al.(4) 2014
 x

 Δv
Target lanes Leftward lane change prediction accuracy of 94.6%

BP Neural Networks Chen et al.(14) 2022
v

ΔS
Whether to change lane Overall accuracy of 96.5%

SVM DOU(6) 2016
x,Δv

gaps
Whether to change lane

Non-merging section-94%

Merging section-78%

Bayesian Networks Qiu et al.(5) 2015

v

Δv

 ΔS

Whether to change lane Lane change recognition accuracy of 88.7%

Deep Learning (DBN) Xie et al.(7) 2019

v

Δv

 ΔS

Whether to change lane

Prediction accuracy of up to 99.32%, significantly

better than the comparison group of BP neural

network-based and rule-based models

Deep Learning(CNN) Zhang et al.(13) 2020
x,v,a,ΔS,ΔT

driving style
Target lanes Prediction accuracy of 98.66%

Deep Learning(LSTM) Huang et al.(8) 2020
x,Δv,ΔS

vehicles size, lane lateral offset M

Coordinates of the next time

sequence

By introducing lane lateral offsets, the accuracy and

generalization capability of the proposed model can

be improved by about 10%

Deep Learning(LSTM) Guo(9) 2021
x,Δv,ΔS

vehicles size

Coordinates of the next time

sequence

In the accuracy test, the model was reduced by 31%

compared to the GRU comparison group

In the mobility test, the MSE was reduced by 39.7%

Deep Reinforcement Learning(DQN) MIRCHEVSKA et al.(35) 2018
v

ΔS
Target lanes

Significant improvement in decision-making

performance and traffic capacity compared to the

rule-based model

Deep Reinforcement Learning(D3QN) Peng et al.(10) 2022

v,Δv,a

the total number of lane changes N

the number of dangerous lane changes N 1

Target lanes
24% increase in driving speed compared to original

data

Rule-based+SVM Jia et al.(11) 2022

v,Δv,a,ΔS

the neccisity, safety degree and benefits

of lane-changing

Target lanes
Prediction accuracy improved by 10.78% after

augmentation

Bayesian Networks+Decision Trees Hou et al.(3) 2014

Δv

ΔS

d

Whether to change lane
Prediction accuracy of 79.3% and 94.3% for lane-

changing and no lane-changing

Bayesian Network+BP Neural Networks Li et al.(36) 2015

v

the distance to lane lines

steering angle

Whether to change lane
Prediction accuracy of 91.4%,  improved 6%

compared to a merely BP NN based model

Imitation Learning(XGBoost)

+Reinforcement Learning(DDPG)
Song et al.(37) 2021

v,Δv,a,ΔS

Adjacent lanes' passable status
Target lanes and coordinates

Significant improvements in safety, traffic efficiency,

comfort and speed of strategy learning compared to

reinforcement learning alone

 LCD models

based on

traditional

machine

learning

 LCD models

based on

deep learning

Integrated

LCD models

Note：x refers to position,v refers to velocity,a refers to acceleration,d refers to driving distance, ΔS  refers to DHW,ΔT refers to THW,Δv  refers to relative velocity,t refers to current time.
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FUTURE RESEARCH DIRECTIONS 

Through the examination of existing literature and relevant research (38), this paper outlines 

the future research directions for developing data-driven CAVs lane-changing decision models 

from the following three aspects. 

1. Data. a. The deficiencies of current datasets, such as noise, lack of driver characteristic 

information, short road segment lengths, and limited application scenarios, can lead to 

problems such as low accuracy, inability to take driver characteristics into account, a lack 

of generalizability, and an inability to apply to multiple lane-changing scenarios. As a result, 

there is a need for micro-driving trajectory datasets that are larger in scope, have a wider 

range of scenarios, and contain both micro-driving trajectory and driver characteristics.  

b. Datasets of mixed traffic flow environments are needed. Currently, mainstream datasets 

are obtained from environments where almost all vehicles are manually operated. Further 

research needs to be done to determine how well manual driving cars' interactions with the 

environment might mimic CAV behavior. 

2. Modeling methods. a. Most existing data-driven lane-changing decision models are still 

based on machine learning methods. It is yet unknown how to apply novel or recently 

discovered artificial intelligence methods and adjust to the aforementioned newly released 

data sources. b. Achieving a balance between lowering model complexity and increasing 

model prediction accuracy and interpretability. Data-driven lane-changing decision models 

need to consider the most significant variables affecting lane-changing behavior as well as 

how to build a minimized model. 

3. Verification and testing. It may not be enough to simply compare the precision of a single 

lane-changing decision-making model or assess its ability to replicate traffic phenomena. 

More thought needs to go into how to test and verify the model from both microscopic and 

macroscopic viewpoints, as well as how to establish more thorough evaluation indicators 

or procedures. 

 

CONCLUSIONS 

This paper provided a state-of-the-art review of the data-driven lane-changing decision models 

for CAVs. Knowledge graphs using the keywords were explored, and then, the existing research 

was summarized and examined in accordance with its data source, characteristics, and the 

applied data-driven modeling methods. In conclusion, this study offered three major 

orientations for future study from the perspective of data, modeling methods, and verification. 
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It would contribute to the development of CAVs decision-making by providing a more sufficient 

dataset, more effective decision models, and more accurate validation. 
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