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Abstract

This study reviews data-driven lane-changing decision (LCD) modeling for connected and automated vehicles (CAVs). Co-
occurrence knowledge graphs of the lane-changing decision in both Chinese and English are shown in this study. We
summarize existing research into two tables from two perspectives: data sources and modeling methods. Three future
research directions, including the need for comprehensive datasets, innovative data-driven methods, and standardized
testing are identified.
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Fig 1 Co-occurrence knowledge graph of the LCD unit in Chinese literature Fig 2 Co-occurrence knowledge graph of the LCD unit in English literature

Summary:

 Literatures are collected from 1998 to 2022, including 385 Chinese literatures and 248 English literatures.

* A significant recent trend in LCD research has centered on the analysis of vehicle trajectories gathered from Intelligent Transportation Systems (ITS).
« Machine learning approaches have been increasingly spotlighted as a focal point in the realm of LCD research.
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Note: x refers to position, v refers to velocity, a refers to acceleration, d refers to driving distance, 45 refers to DHW, AT refers to THW, 4v refers to relative velocity, ¢ refers to current time.

 Recently released open-source high-precision vehicle trajectory datasets Summary:

perform better in terms of data volume, accuracy, and the variety of traffic * Generally, there are two types of data-driven LCD models: traditional machine
scenarios. learning-based LCD models and deep learning-based LCD models. Nowadays, a

new kind of integrated models Is emerging.

« Traditional machine learning-based models include neural networks, support
vector machines, and Bayesian filters. Deep learning-based models include DBN,
CNN, LSTM, and DRL.

* Integrated models include: LC rules + machine learning models and multiple
machine learning fusion models

 The appearance of new datasets helps to solve the problems of the NGSIM
dataset and also presents new opportunities and challenges for the validation
and generalization testing of existing data-driven LCD models

Conclusion

This paper provides a state-of-the-art review of the data-driven lane-changing decision models for CAVs from the perspective of mainstream trajectory databases and commonly

used LCD modeling methods. Three research orientations for the development of future data-driven CAVs LCD models are outlined:

« Data: datasets collected in mixed traffic flow with both micro-driving trajectory and driver characteristics

 Modeling Methods: to achieve a balance between lowering model complexity and increasing model prediction accuracy and interpretability

« Verification and Testing: to test and verify the model from both microscopic and macroscopic viewpoints, as well as how to establish more thorough evaluation indicators or
procedures.
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